ECF is a C++ framework intended for application of any type of
evolutionary
computation. Current features include:
- parameterless: genotype (individual structure) is the only
mandatory parameter
- algorithms: steady state tournament, generational roulette-wheel,
elimination, particle swarm optimization (PSO),
differential evolution (DE),
genetic annealing, artificial bee colony (ABC),
clonal selection (CLONALG),
immune optimization (optIA),
evolution strategy, random search
- genetic
algorithm genotypes
(bitstring, binary encoded real values, floating point vectors, permutation vectors),
genetic
programming genotype (tree)
- individuals may contain any genotypes in any number
- examples: GP symbolic regression,
GP artificial ant,
function
optimization,
TSP,
onemax
- parallel execution in many models (global paralel EA, distributed
EA, hybrid parallel EA...) using
MPI
- configurable environment: changing algorithm, genotypes and parameters
without recompilation
- checkpointing
and population restoring, various termination criteria,
repeated runs,
crx and mutation operators selection and usage rate, migration
More detailed feature list
Download
What's new in 1.4.2:
- new algorithm:
Cuckoo search
- new build tools: CMake, CLion (existing: VisualStudio, autotools)
What's new in 1.4:
What's new in 1.3.3:

Documentation
These files are also included in the package (./help directory).
Support:
References
- Jakobović, Domagoj; Golub, Marin; Čupić, Marko.
Asynchronous and implicitly parallel evolutionary computation models.
// Soft computing. (2013)
- Picek, Stjepan; Jakobović, Domagoj; Golub, Marin.
Evolving Cryptographically Sound Boolean Functions //
Proceedings of the Genetic and Evolutionary Computation Conference 2013.
Amsterdam : ACM, 2013. 191-192
- Picek, Stjepan; Jakobović, Domagoj; Golub, Marin.
On the Recombination Operator in the Real-Coded Genetic Algorithms
// Proceedings of the 2013 IEEE Congress on Evolutionary Computation.
2013. 3103-3110
- Jakobović, Domagoj; Marasović, Kristina. Evolving
priority scheduling heuristics with genetic programming. //
Applied soft computing. 12 (2012) , 9; 2781-2789
- Picek, Stjepan; Golub, Marin; Jakobović, Domagoj.
On the Analysis of Experimental Results in Evolutionary Computation
// MIPRO 2012 International Convention. Opatija, 2012. 1245-1250
- Picek, Stjepan; Golub, Marin; Jakobović, Domagoj. Evaluation
of Crossover Operator Performance in Genetic Algorithms with Binary
Representation. // Lecture Notes in Computer Science. 6840
(2011) ; 223-230
- Brajer, Iva; Jakobović, Domagoj. Automated
Design of Combinatorial Logic Circuits // MIPRO 2012
International Convention.Opatija, 2012. 964-969
Development in progress
Contributors
(Alphabetical order): Hrvoje Ban, Vinko Bedek, Igor Bespaljko, Iva Brajer, Luka Donđivić,
Luka Franov, Zvonimir Fras,
Danko Komlen, Ivan Kokan, Luka Kraljevic, Luka Krizan, Maja Legac, Tomislav Novak,
Lovro Paić-Antunović, Stjepan Picek, Dražen Popović, Ángel Ferreira-Santiago, Domagoj
Stanković, Ivana Stokić, Mirjam Škarica
Project leader & support contact: Domagoj Jakobović (domagoj.jakobovic @
fer.hr)
Acknowledgements
ECF software uses the following components:
Additionally, this project was inspired by
OpenBEAGLE, a comprehensive OO
evolutionary framework.
Last update:
23.04.2019