ECF is a C++ framework intended for application of any type of
evolutionary
computation. Current features include:
- parameterless: genotype (individual structure) is the only
mandatory parameter
- algorithms: steady state tournament, generational roulette-wheel,
elimination, particle swarm optimization (PSO),
differential evolution (DE),
genetic annealing, artificial bee colony (ABC),
clonal selection (CLONALG),
immune optimization (optIA),
evolution strategy, random search
- genetic
algorithm genotypes
(bitstring, binary encoded real values, floating point vectors, permutation vectors),
genetic
programming genotype (tree), analytic programming
- individuals may contain any genotypes in any number
- many examples: GP symbolic regression,
GP artificial ant,
function
optimization,
TSP,
onemax, function optimization from CEC Real-Parameter Numerical Optimization
- parallel execution in many models (global paralel EA, distributed
EA, hybrid parallel EA...) using
MPI
- configurable environment: changing algorithm, genotypes and parameters
without recompilation
- checkpointing
and population restoring, various termination criteria,
repeated runs,
crx and mutation operators selection and usage rate, migration
More detailed feature list
Download
Documentation
These files are also included in the package (./help directory).
Integration with COCO benchmark:
Support:
References
- Jakobović, Domagoj; Golub, Marin; Čupić, Marko.
Asynchronous and implicitly parallel evolutionary computation models.
// Soft computing. (2013)
- Picek, Stjepan; Jakobović, Domagoj; Golub, Marin.
Evolving Cryptographically Sound Boolean Functions //
Proceedings of the Genetic and Evolutionary Computation Conference 2013.
Amsterdam : ACM, 2013. 191-192
- Picek, Stjepan; Jakobović, Domagoj; Golub, Marin.
On the Recombination Operator in the Real-Coded Genetic Algorithms
// Proceedings of the 2013 IEEE Congress on Evolutionary Computation.
2013. 3103-3110
- Jakobović, Domagoj; Marasović, Kristina. Evolving
priority scheduling heuristics with genetic programming. //
Applied soft computing. 12 (2012) , 9; 2781-2789
- Picek, Stjepan; Golub, Marin; Jakobović, Domagoj.
On the Analysis of Experimental Results in Evolutionary Computation
// MIPRO 2012 International Convention. Opatija, 2012. 1245-1250
- Picek, Stjepan; Golub, Marin; Jakobović, Domagoj. Evaluation
of Crossover Operator Performance in Genetic Algorithms with Binary
Representation. // Lecture Notes in Computer Science. 6840
(2011) ; 223-230
- Brajer, Iva; Jakobović, Domagoj. Automated
Design of Combinatorial Logic Circuits // MIPRO 2012
International Convention.Opatija, 2012. 964-969
- Picek, Stjepan; Golub, Marin; Jakobović, Domagoj.
Influence of the Crossover Operator in the Performance of the Hybrid
Taguchi GA // Proceedings of the 2012 IEEE Congress on
Evolutionary Computation / Xiaodong Li (ur.).
Brisbane, 2012. 1480-1487
Contributors
(Alphabetical order): Hrvoje Ban, Vinko Bedek, Igor Bespaljko, Iva Brajer, Luka Donđivić,
Luka Franov, Zvonimir Fras,
Danko Komlen, Ivan Kokan, Luka Krizan, Maja Legac, Tomislav Novak,
Lovro Paić-Antunović, Stjepan Picek, Dražen Popović, Ángel Ferreira-Santiago, Domagoj
Stanković, Ivana Stokić, Mirjam Škarica
Project leader & support contact: Domagoj Jakobović (domagoj.jakobovic @
fer.hr)
Acknowledgements
ECF software uses the following components:
Additionally, this project was inspired by
OpenBEAGLE, a comprehensive OO
evolutionary framework.
Last update:
10.08.2022